PCB relay for DC voltage, polarized, monostable or bistable

Features

- Universally applicable in the most varied circuit functions in the field of telecommunications and small signal technology
- Versatile design as it can be delivered with different power consumptions ($\mathrm{P}_{\mathrm{N}}=150$ to 250 mW) as well as with reversed coil polarity
- High reliability due to slide-free operation of the middle spring
- High-voltage resistance according to FCC Part 68

Approx. $1.5 \times$ original size

Versions

- Relay types: monostable with 1 winding or bistable with 2 windings or bistable with 1 winding
- With 2 changeover contacts
- With double contacts
- For printed circuit assembling
- Immersion cleanable

Approvals

-1	UL	File E 48393
(51)	CSA	File LR 50227-7

Dimension drawing (in mm)

Mounting hole layout
View on the terminals

Monostable and bistable, 1 winding

Basic grid 2.54 mm according to EN 60097 and DIN 40803, fine

Bistable,
2 windings

Basic grid 2.54 mm according to EN 60097 and DIN 40803, fine

Terminal assignment

View on the terminals

Monostable and bistable,
1 winding
V23042-A2***
V23042-C2***

ECRO826-B

The switch position illustrated shows the release condition.
If a positive potential is applied to terminal 1, the relay adopts the operating position.

Monostable and bistable, 1 winding
V23042-A3***
V23042-C3***

Bistable,
2 windings
V23042-B2***

ECR0828-S

The switch position illustrated shows the release condition.
If a positive potential is applied to terminal 1 or 15 , the relay adopts the operating position.

Small relay D2

Contact data		
Ordering code block 3	B101	B201
Number of contact and type	2 changeover contacts	
Contact assembly	Double contacts	
Contact material	Gold-plated silver against palladium silver	Gold-plated palladium silver against palladium silver
Max. continuous current at max. ambient temperature	2 A	
Maximum switching current	5 A	
Maximum switching voltage	$\begin{aligned} & 250 \mathrm{~V}- \\ & 220 \mathrm{~V} \end{aligned}$	
Maximum switching voltage according to VDE 0110, insulation group A	$\begin{aligned} & 150 \mathrm{~V}- \\ & 125 \mathrm{~V} \sim \end{aligned}$	
Maximum switching capacity DC voltage AC voltage	50 ... 150 W , see load limit curve250 VA	
Recommended for load voltages greater than	$100 \mu \mathrm{~V}$	
Thermoelectric potential	$\leq 10 \mu \mathrm{~V}$	
Contact resistance (initial value) / measuring current / driver voltage	$\leq 50 \mathrm{~m} \Omega / 10 \mathrm{~mA} / 20 \mathrm{mV}$	

Load limit curve

I = switching current
$U=$ switching voltage
$\square=$ recommended application field

Definition of the load limit curve I:
Definition of the load limit curve II:

Quenching of the arc before the transit time
In 1000 operations, no arc with a burning time of $>10 \mathrm{~ms}$ may occur

Small relay D2

Coil data

Nominal energizing voltage	From 3V- to 48V-
Typical nominal power consumption	$150 \ldots 250 \mathrm{~mW}$
monostable with 1 winding	
bistable with 2 windings	
bistable with 1 winding	$150 \ldots 200 \mathrm{~mW}$
	$75 \ldots 100 \mathrm{~mW}$ (depending on the coil version, see table)
Maximum operating voltage	$70 \ldots 80 \%$ of the nominal energizing voltage, depending on the coil version
Maximum reverse voltage (bistable)	75% of the nominal energizing voltage
Minimum release voltage (monostable)	10% of the nominal energizing voltage
Maximum holding voltage (non-releasing, monostable)	35% of the nominal energizing voltage

$\mathrm{U}_{\mathrm{l}} \quad=$ minimum voltage at $20^{\circ} \mathrm{C}$ after pre-energizing with nominal energizing voltage without contact current
$\mathrm{U}_{\text {II }} \quad=$ maximum continuous voltage at $20^{\circ} \mathrm{C}$
The operating voltage limits U_{\mid}and $U_{\| \mid}$are dependent on the temperature according to the formulae:
$U_{I \text { tamb }}=k_{I} \cdot U_{120^{\circ} \mathrm{C}}$
and
$U_{\text {II tamb }}=\mathrm{k}_{\text {II }} \cdot U_{\text {II } 20^{\circ} \mathrm{C}}$
$t_{\mathrm{amb}}=$ ambient temperature
$U_{\text {Itamb }}=$ minimum voltage at ambient temperature, $t_{\text {amb }}$
$U_{\text {ll tamb }}=$ maximum voltage at ambient temperature, $t_{\text {amb }}$ k_{\mid}a. $k_{\| \|}=$factors (temperature dependent), see diagram

Small relay D2

Coil versions

Nominal energizing voltage $U_{\text {nom }}$	Operating voltage range at $20^{\circ} \mathrm{C}$		Resistance at $20^{\circ} \mathrm{C}$	Coil number Ordering code block 2
	Minimum voltage, U_{1}	Maximum voltage, $U_{\text {II }}$		
V-	V-	V-	Ω	
monostable, 1 winding, 150 mW nominal power consumption				A2*** / A3***
5	4	12.3	167 ± 16.7	601
12	9.6	29	960 ± 96	603
24	19.2	57	3840 ± 384	605

monostable, 1 winding, 200 mW nominal power consumption

	A2*** / A3		
	45	\pm	4.5
308			
125	\pm	12.5	301
720	\pm	72	303
2880	\pm	288	305
11520	\pm	1152	307

monostable, 1 winding, 250 mW nominal power consumption
A2*** / A3***

bistable, 2 windings, 200 mW nominal power consumption B2***

3	2.25	6.4	45	\pm	4.5	208
5	3.75	10.6	125	\pm	12.5	201
12	9	25.5	720	\pm	72	203
24	18	42.8	2040	\pm	204	205
bistable, 1 winding, 75 mW nominal power consumption						C2*** / C3***
3	2.25	10.4	120	\pm	12	158
5	3.75	17.2	330	\pm	33	151
12	9	6.4	1920	\pm	192	153
24	18	83.1	7680	\pm	768	155
bistable, 1 winding, 100 mW nominal power consumption						C2*** / C3***
3	2.25	9		\pm	9	108
5	3.75	15	250	\pm	25	101
12	9	36	1440	\pm	144	103
24	18	60	4000	\pm		105

Further coil versions are available on request.

Small relay D2

General data

Typical operate time at $U_{\text {nom }}$ and at $20^{\circ} \mathrm{C}$		3 ms		
Typical reverse time at $U_{\text {nom }}$ and at $20^{\circ} \mathrm{C}$		3 ms		
Typical release time without/with diode in parallel		$2 \mathrm{~ms} / 4 \mathrm{~ms}$		
Typical bounce time		3 ms		
Maximum switching rate without load		100 operations/s		
Ambient temperature according to DIN IEC 255 Part 1-00 or VDE 0435 part 201		$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$		
Vibration resistance, Frequency range according to IEC 68-2-6		$\begin{gathered} 50 \mathrm{~g} \\ 10-500 \mathrm{~Hz} \end{gathered}$		
Shock resistance, half sinus, 11 ms according to IEC 68-2-27		50 g		
Protection class according to DIN VDE 0470 part 1 / IEC 529		immersion cleanable sealing corresponds to DIN IEC 68, part 2-17, method Qc 2		
Mechanical endurance		2×10^{7} switching cycles		
Mounting position		any		
Processing information		Ultrasonic cleaning is not recommended		
Weight		approx. 5 g		
Electrical endurance				
Contact material silver, gold-plated, against palladium silver (-B101)				
Switching voltage V	Switching current mA	Switching cycles	Load type	Endurance determined by switching cycles
0	0	approx. 2×10^{7}	dry circuit	10
6-	100	approx. 2×10^{7}	resistive	10
24-	50	approx. 2×10^{7}	resistive	10
Contact material palladium silver, gold-plated, against palladium silver (-B201)				
Switching voltage V	Switching current mA	Switching cycles	Load type	Endurance determined by switching cycles
0	0	approx. 2×10^{7}	dry circuit	10
6-	100	approx. 2×10^{7}	resistive	10
24-	50	approx. 2×10^{7}	resistive	10
60-	50	approx. 10^{7}	resistive with 10 m cable	10

Insulation

Insulation's resistance at 500 V	$1000 \mathrm{M} \Omega$
Dielectric test voltage (1 min)	
Contact / winding at 1 winding / at 2 windings	$1500 \mathrm{~V} \sim$ eff $/ 1000 \mathrm{~V} \sim$ eff
Changeover contact / changeover contact	$1500 \mathrm{~V} \sim$ eff
Changeover tip / changeover tip	$1000 \mathrm{~V} \sim_{\text {eff }}$

Ordering code

Ordering example: V23042-C2103-B201
Small relay D2, bistable, coil with 1 winding, 12 V nominal energizing voltage, Pull-in via plus pole on pin 1, contact material gold-plated palladium silver against palladium silver

Note:

The ordering scheme above covers far more possible varieties than are presently offered in the delivery program. Special designs to customer specifications are possible; please contact your local office.

Preferred standard types (delivery program)

V23042	-A2001-B101	V23042
-A2001-B201	-B2201-B101	V23042-C2101

