SIEMENS

SIPROTEC 7SJ601 Numerical Overcurrent Relay

Protection Systems

Catalog LSA 2.1.16 · 1997

Distribution protection

- Definite-time overcurrent protection (I >>, I>/50, IE>>, IE>/50N) and/or inverse-time overcurrent protection (I>>, Ip/51, IE>> IEp/51N, optional IEC or ANSI time characteristics)
 Reverse interlocking
- Metering (operational measurement)
- Circuit-breaker / Trip contact testing
- Monitoring and self-diagnostics
 - HardwareSoftware
- 30 event logs with time stamp
- Hardware
 - Local HMI
 - LCD display for setting parameters and analysis
 - Housing
 Flush-mounting
 housing 1/6 19 inch
 7XP20
 Surface-mounting
 housing 1/6 19 inch
 7XP20
 - Auxiliary voltages
 24, 48 V DC
 60, 110, 125 V DC
 220, 250 V DC, 115 V AC
 230 V AC

	/ /
SIEMENS	-
	1
Brites C 1 C	1
Strong © 2.0	
3 C	1
40	-
	ļ
• A -	
Yiz V N trac	ere
Summers of tail any find an analysis for	LSA2-007F
налина ражара налинатара - ак. по чоко - ак. по чоко - ак. разкол-на - ак. разкол-на	
	Fig. 1 SIPROTEC 7SJ601 numerical overcurrent relay
	Protection functions
	(50) I>>, I>
	50N) IE>>, IE>
	(51) <i>I</i> p
	51N IEp

	Page
Description	2
Inverse-time overcurrent rela according to IEC according to ANSI/IEEE	y 3 4 and 5
Typical applications CT circuits	6 6
Scope of functions	7
Technical data	8
Selection and ordering data	12
Circuit-diagram	13
Dimension drawings	14
Conditions of Sale and Delivery	16

© Siemens AG 1997

Description

Wide range of applications

The SIPROTEC 7SJ601 is a numerical overcurrent relay which, in addition to its primary use in radial distribution power systems and motor protection, can also be employed as backup for line, transformer and generator differential protection.

It provides definite-time and inverse-time overcurrent protection.

Construction

The device contains all the components needed for

- acquisition and evaluation of measured values
- operation and display (local MMI)
- output of signals and trip commands
- input and evaluation of binary signal
- auxiliary voltage supply The nominal CT currents applied to the SIPROTEC 7SJ601 can be 1 A or 5 A.

Two different cases are available. The flush-mounting or cubicle version has terminals at the rear. The surfacemounting version has terminals at the front.

Improved measurement technique

The SIPROTEC 7SJ601 relay operates fully numerical with enhanced algorithms. Due to the numerical processing of measured values, the influence of higher-frequency transient phenomena and transient DC components is largely suppressed.

Continuous self-monitoring

The hardware and software in the SIPROTEC 7SJ601 device are continuously self-monitored. This ensures a very high level of availability and reduces the need for routine testing.

Convenient setting

The menu driven HMI is used for setting parameters. These parameters are stored in a nonvolatile memory so that the settings are retained even if the supply voltage is cut off.

Circuit-breaker / Trip contact testing

The trip and reclose command contacts can be activated via the keyboard. This facilitates testing of the trip and close circuits without the need for additional test equipment.

Status of inputs and outputs

For easy commissioning the status of each binary input, relay or LED can be displayed via HMI.

Event logging with time stamp

The SIPROTEC 7SJ601 device supplies detailed data for the analysis of faults and for checking on operating conditions.

- Event logs
- The last 3 event logs can always be displayed. If a new fault occurs, the oldest will be overwritten. These logs give a detailed description of the fault in the power system and the reaction of the SIPROTEC 7SJ601, with 1ms resolution. Each record is time stamped and assigned a sequential number.
- Operation indications
 This log records up to 30 internal events in the relay
 with 1ms resolution. These
 events include setting changes and resets to the relay,
 binary input activity and
 other relay internal activities.

The definite-time overcurrent function is based on phase-selective measurement of the three phase currents.

The earth (ground) current I_E (Gnd) is calculated from the three line currents I_{L1} (A), I_{L2} (B), and I_{L3} (C).

The definite-time overcurrent protection for the three phase currents has a low-set overcurrent element (I>) and a high-set overcurrent element (I>>). Intentional trip delays can be parameterized from 0.00 to 60.00 seconds for the low-set and high-set overcurrent elements.

Definite-time overcurrent protection

1>>

^{*)} Device parameter

Inverse-time overcurrent protection (ANSI/IEEE)

Characteristic of inverse-time overcurrent protection acc. to **ANSI/IEEE**

- inverse
- short inverse
- long inverse
- moderately inverse
- very inverse
- extremely inverse
- definite inverse
- I squared T

- t = tripping time in s
- I = measured current
- $I_{\rm P}$ = parameterizable pickup value 0.1 to 4 $I/I_{\rm N}$
- D = time multiplier

<u>Note</u> for Figs. 10 to 12: Scope of I/I_p from 1.1 to 20

Tripping characteristic of definite-time overcurrent protection

<u>Note</u> for Fig. 18: Scope of I/Ip from 1.1 to 20

*) Device parameter

Typical applications CT circuits

Busbar protection

(Reverse interlocking) Reverse interlock principle involves the blocking of the highspeed overcurrent protection on the supply feeder, to the auxiliary bus, if any of the load feeder overcurrent relays are in pickup. If a fault is not present on any of the associated load feeders, the supply's highspeed overcurrent protection will not be blocked, providing reliable protection for bus faults.

In this manner, selective highspeed overcurrent relaying can be applied to the supply and load feeders to provide coordinated bus protection. The relays, through contact input and output interconnection, can discriminate and operate selectively for various types of faults and locations, tripping only the affected parts of the system.

CT circuits

(standard connection)

- measured *I*_{L1} (A), *I*_{L2} (B), *I*_{L3} (C)
- calculated
 *I*_E (Gnd)

Scope of functions

Multiple applications

- Overhead line and cable pro-Overnead line and tectionMotor protection
- (short-circuit protection)
- Transformer protection (main or backup protection)
- Generator protection (backup protection)
- Busbar protection (reverse interlocking) • Less wiring
- Reliable and available, internal hardware and software monitoring, current transformer monitoring, trip-circuit monitoring
- Reduced testing due to self diagnostics and numerical technology
- "Easy" commissioningSimplified parameterization

Additional functions

- Metering functions - currents
- Event (operational indications) recording
- status indications - event log
- fault log records

*) Options

Technical data

CT circuits	Rated current IN	1 A or 5 A
	Rated frequency f _N	50 Hz or 60 Hz
	Power consumption	0.4344
	Current input at $I_N = 1 A$ at $I_N = 5 A$	< 0.1 VA < 0.2 VA
		< 0.2 V/Y
	Thermal (rms)	$100 \times I_N$ for ≤ 1 s
		$30 \times I_N$ for $\le 10s$
	Dynamic (pulse current)	$4 \times I_N$ continuous 250 x I_N one half cycle
DC/DC converter	Rated auxiliary voltage V _{aux} /permissible variations	24/48 V DC/19 to 58 V DC
		220/250 V DC/176 to 300 V DC
		115 V AC/88 to 133 V AC
		230 V AC/176 to 265 V AC
	Superimposed AC voltage,	
	peak to peak	< 12.04
	at limits of admissible voltage	<6%
	Power consumption	
	Quiescent	Approx. 2 W
	Energized	Approx 4 W
	Bridging time during failure/	\geq 50 ms at $V_{rated} \geq$ 110 V AC/DC
	Short-circuit of auxiliary voltage	220 TTIS at Vrated 224 V DC
Heavy-duty (command) contacts	Command (trip) relays, number	1
	Contacts per relay	2 NO
	Switching capacity	
	Make	1000 W/ VA
	Diedk	30 W/ VA
	Dermissible europt	200 V
	Continuous	5 A
	For 0.5s	30 A
Signal contacts	Signal/alarm rolays	2
3	Contacts nor relay	100
	Switching capacity	100
	Make	1000 W/ VA
	Break	30 W/ VA
	Switching voltage	250 V
	Permissible current	5 A
Binary inputs	Number	1
5	Operating voltage	24 to 250 V DC
	Current consumption, energized	Approx: 2.5 mA
	independent of operating voltage	Approxi Zie mit
	Pick-up threshold, reconnectable by	
	solder bridges	
	24/48/60 V DC	$V_{\text{nick-un}} \ge 17 \text{ V DC}$
		$V_{\rm drop-off} < 8 \rm V DC$
	110/125/220/250 V DC	$V_{\text{pick-up}} \ge 74 \text{ V DC}$
		varop-ott < 45 V DC
Insulation tests	Standards	IEC 255-5, ANSI/IEEE C37.90.0
	High-voltage test (routine test)	
	Except DC voltage supply input and RS485	2 kV (rms), 50 Hz
	Impulso voltago tost (typo tost)	$5 kV(nosk) = 1.2/50 \mu s$
	all circuits, class III	0.5 J; 3 positive and 3 negative shots at
		intervals of 5 s

EMC tests, immunity	
(type tests)	

Standards

High frequency IEC 255-22-1, class III and DIN VDE 0435 Part 303, class III Electrostatic discharge IEC 255-22-2, class III and EN 61000-4-2, class III

Radio-frequency electromagnetic field Non-modulated, IEC 255-22-3 (report), class III Amplitude modulated, IEC 1000-4-3, class III

Pulse modulated, IEC1000-4-3/ENV 50204, class III East transients IEC 255-22-4 and IEC 61000-4-4, class III

Conducted disturbances induced by radio-frequency fields, amplitude modulated IEC 1000-4-6, class III Power frequency magnetic field IEC 1000-4-8, class IV IEC 256-6 Oscillatory surge withstand capability ANSI/IEEE C37.90.1 (common mode)

Fast transient surge withstand capability ANSI/IEEE C37.90.1 (commom mode) Radiated electromagnetic interference ANSI/IEEE C37.90.2 High frequency test Document 17C (SEC) 102

EMC tests, emission

Mechanical stress tests Vibration and shock during operation

(type tests)

Vibration and shock during transport

Conducted interference voltage, aux. voltage CISPR 22, EN 55022, DIN VDE 0878 Part 22, limit value class B Interference field strength CISPR 11, EN 55011, DIN VDE 0875 Part 11, limit value class A

Standards Vibration IEC 255-21-1, class1 IEC 68-2-6

Standard

Shock IEC 255-21-2, class 1 Seismic vibration IEC 255-21-3, class 1 IFC 68-3-3

Vibration IEC 255-21-1, class 2 IEC 68-2-6

Shock IEC 255-21-2, class 1 IEC 68-2-27 Continuous shock IEC 255-21-2, class 1, IEC 68-2-27

IEC 255-6; IEC 255-22 (product standard) EN 50082-2 (generic standard), DIN VDE 0435 Part 303

2.5 kV (peak), 1 MHz, τ =15 μ s, 400 shots/s, duration 2 s

4 kV/6 kV contact discharge, 8 kV air discharge, both polarities, 150 pF, $R_{\rm i}$ =330 Ω

10 V/m, 27 MHz to 500 MHz 10 V/m, 80 MHz to 1000 MHz, 80% AM, 1 kHz 10 V/m, 900 MHz, repetition frequency 200 Hz, duty cycle 50% 2 kV, 5/50 ns, 5 kHz, burst length 15 ms, repetition rate 300 ms, both polarities, $R_{\rm i} = 50\Omega$, duration 1 min 10 V, 150 kHz to 80 MHz, 80% AM, 1 kHz 30 A/m continuous, 50 Hz 300 A/m for 3 s, 50 Hz 0.5 mT; 50 Hz 2.5 kV to 3 kV (peak), 1 MHz to 1.5 MHz, decaying oscillation,50 shots per s, duration 2 s, ${\cal R}_{\rm l}=150~\Omega$ to 200 Ω 4 kV to 5 kV, 10/150 ns, 50 shots per s, both polarities, duration 2 s, $R_{\rm i}$ = 80 Ω 10 V/m to 20 V/m, 25 MHz to 1000 MHz, amplitude and pulse modulated 2.5 kV (peak, alternating polarity), 100 kHz, 1 MHz, 10 MHz and 50 MHz, decaying oscillation, $R_i = 50 \Omega$

EN 50081-* (generic standard) 150 kHz to 30 MHz

30 MHz to 1000 MHz

Acc. to IEC 255-21and IEC 68-2 Sinusoidal 10 Hz to 60 Hz: \pm 0.035 mm amplitude, 60 Hz to 150 Hz: 0.5 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes Half sine, acceleration 5 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes

Sinusoidal 1 Hz to 8Hz: \pm 3.5 mm amplitude (horizontal axis) 1 Hz to 8 Hz: \pm 1.5 mm amplitude (vertical axis) 8 Hz to 35 Hz: 1 g acceleration (horizontal axis) 8 Hz to 35 Hz: 0.5 g acceleration (vertical axis) 6 Hz to 35 Hz: 1 d acceleration (vertical axis) Sweep rate 1 octave/min 1 cycle in 3 orthogonal axes

Sinusoidal 5 Hz to 8 Hz: ± 7.5 mm amplitude; 8Hz to 150 Hz: 2 g acceleration Sweep rate 1 octave/min 20 cycles in 3 orthogonal axes Half sine, acceleration 15 g, duration 11 ms, 3 shocks in each direction of 3 orthogonal axes Half sine, acceleration 10 g duration 16 ms, 1000 shocks in each direction of 3 orthogonal axes

Technical data

Climatic stress tests	Recommended temperature	
	during service	$> 55^{\circ}$ C (131° F) decreased display contrast
	Permissible temperature	
	during service during storage during transport	- 20° C to + 70° C (-4° F to 158° F) - 25° C to + 55° C (-13° F to 131° F) - 25° C to + 70° C (- 13° F to 158° F)
	(Storage and transport with standard works packaging)	
	Permissible humidity	Mean value per year ≤ 75% relative humidity, on 30 days per year 95% relative humidity, condensation not permissible
	We recommend to arrange the devices in such a way that the are kept from direct sun and from changes in temperature the superature the supera	ney nat might induce condensation.
Design	Housing 7XP20	For dimensions refer to dimension drawings pages 14 and 15
	Weight Flush mounting /cubicle mounting Surface mounting	Approx. 4 kg Approx. 4.5 kg
	Degree of protection acc. to EN 60529 Housing Terminals	IP51 IP21
Definite-time overcurrent protec-	Setting range/steps	
tion (50, 50N)	Overcurrent pick-up phase I> earth Ir>	$I/I_{\rm N} = 0.1$ to 25.0 (steps 0.1), or ∞ = 0.1 to 25.0 (steps 0.1), or ∞
	phase I>>	$I/I_{\rm N} = 0.1$ to 25.0 (steps 0.1, or ∞
	$earth I_E >>$	= 0.1 to 25.0 (steps 0.1), or ∞
	The set times are pure delay times	0.00 s to 60.00 s (steps 0.01 s)
	Pick-up times	
	at 2 x setting value, without meas, repetition	Approx. 35 ms
	Reset times	Αρριόλ. 33 Π3
	$I >, I >>, I_{E} >, I_{E} >>$	Approx. 65 ms at 50 Hz Approx. 95 ms at 60 Hz
	Reset ratios	Approx. 0.95
	Overshot time	Approx. 55 ms
	Tolerances Pick-up values <i>I</i> >, <i>I</i> >>, <i>I</i> _E >>, <i>I</i> _E >> Delay times <i>T</i>	5% of setting value 1% of setting value or 10 ms
	Influence variables	
	Auxiliary voltage in range $0.8 \le V_{aux}/V_{auxN} \le 1.2$ Temperature in range $0^{\circ} C \le \Theta_{amb} \le 40^{\circ} C$ $(32^{\circ} F \le \Theta_{amb} \le 104^{\circ} F)$	≤1% ≤0.5%/10K
	Frequency in range $0.98 \le flf_N \le 1.02$ Frequency in range $0.95 \le flf_N \le 1.05$ Harmonics	≤1,5 % ≤2,5 %
	up to 10% of 3rd harmonic	≤1%
	up to 10% of 5th harmonic	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
protection (51/51N)	Setting range/steps	
	Overcurrent pick-up phase $I_{\rm p}$ earth $I_{\rm Ep}$	$I/I_{\rm N} = 0.1$ to 4.0 (steps 0.1) = 0.1 to 4.0 (steps 0.1)
	Time multiplier for I_{p} , I_{Ep} (IEC characteristic)	$T_{\rm p}$ 0.05 to 3.20 s
	Overcurrent pick-up phase I>> earth I _E >>	$I/I_{\rm N} = 0.1$ to 25.0 (steps 0.1), or ∞ $I/I_{\rm N} = 0.1$ to 25.0 (steps 0.1), or ∞
	Delay time T for $I >>, I_E >>$	0.00 s to 60.00 s (steps 0.01 s)
	Pick-up threshold	Approx. 1.1 x Ip
	Drop-off threshold Drop-off time	Approx. 1.03 x I _p Approx. 50 ms at 50 Hz
	-	Approx. 60 ms at 60 Hz
	Pick-up values	5%
	Delay time for $2 \le I/I_p \le 20$ and $0.5 \le I/I_N \le 24$	5% of theoretical value + 2% current tolerance:
		at least 30 ms

	Influence variables	
protection (51/51N)	Auxiliary voltage in range	
(cont'd)	$0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤1%
х ,	l'emperature in range	20 F 0/ 110 K
	$-5 C \leq \Theta_{amb} \leq +40 C$ $-32^{\circ} E \leq \Theta_{amb} \leq +104^{\circ} E$	S0,5 % / 10 K
	Frequency in range	
	$0.95 \le f f_{\rm N} \le 1.05$	\leq 8 % referred to theoretical time value
	Tripping characteristic acc. to ANSI/IEEE	see pages 4 and 5
	Pick-up threshold	Approx. 1.06 x <i>I</i> _p
	Drop-off threshold	Approx. 1.01 x Ip
	Tolerances	
	Pick-up thresholds	5%
	Delay lime	+ 2 % of current tolerance
		at least 30 ms
	Influence variables	
	Auxiliary voltage in range	
	$0.8 \le V_{aux}/V_{auxN} \le 1.2$	≤1%
	Temperature in range	
	$0^{\circ} C \leq \Theta_{amb} \leq +40^{\circ} C$ $32^{\circ} E \leq \Theta_{amb} \leq +104^{\circ} E$	≤0,5 % / 10 K
	Frequency in range	
	$0.95 \le fl f_{\rm N} \le 1.05$	\leq 8 % referred to theoretical time value
Additional functions	Operational value measurements	
	Operational current values	I_{L1}, I_{L2}, I_{L3}
	Toloranco	0% to 240% IN 3% of rated or measured value
	Fault event data storage	Storage of annunciations of the last 3 faults
	Time assignment	1.0
	Resolution for fault event annunciations	1 S 1 ms
	Max. time deviation	0.01 %
CE-conformity, regulations	The product meets the stipulations of the guideline of the	
	council of the European Communities for harmonization of	
	magnetic compatibility (EMC quideline 89/336/EEC)	
	The product conforms with the international standard of the	
	IEC 255 series and the German national standard	
	DIN VDE 57 435, Part 303. The unit has been developed and	
	manufactured for use in industrial areas in accordance with the EMC standard. The unit has not been designed for use in	
	living quarters as defined in standard EN 50081	
	This conformity is the result of a test that was performed by	
	Siemens AG in accordance with article 10 of the guideline	
	and the EN 50081-2 and EN 50082-2 basic specifications.	

Selection and ordering data

Designation	Order No.
75 I601 numerical overcurrent relay	75 16010 - 00400 - 0040
Rated current	
5 A	5
Rated auxiliary voltage for integrated converter	
DC 24, 48 V DC 60, 110, 125 V DC 220, 250, AC 115 V AC 230 V	2 4 5 6
<u>Housing</u> with 7XP20 housing Surface mounting, terminals on the side Flush mounting/cubicle mounting	BE
Language English German Spapish	0 1 2
French	3
Rated frequency 50 Hz 60 Hz	0
<u>Tripping characteristics</u> Definite Time I>>, I>, I _E >, I _E > Definite/Inverse I>>, I _p , I _E >>, I _{Ep} (IEC) Definite/Inverse I>>, I _p , I _E >>, I _{Ep} (ANSI)	U J A
In addition we offer: SIPROTEC 7SJ600,	
Overload protection Negativ sequence protection	
Fault recordingAdditional event logs	
 2 additional binary inputs 1 additional trip relay PS 485 port 	
 R3403 port Operating and analysis software See Catalog LSA 2.1.15. Order N°.: F50001-K5712-A251-A1-7 	600

Circuit diagram

Dimension drawings in mm (inch)

Terminals					
		Wire size	Fittings	Order No. (manufacturer)	Order No. (Siemens)
	Contacts 1 to 6				
	Ring-cable lugs	Crimp spring contacts ¹⁾ from Grote & Hartmann (type DFK 2)			
	d ₁ = 6 mm (0.24 in)	0.5 to 1 mm ² one-sided locating spring	3000 Stck.	26456.331.042	W53073-A2508-C1
LSA2-0	W _{max.} = 13 mm (0.51 in)	1.5 to 2.5 mm ² one-sided locating spring	2500 Stck.	26457.331.042	W53073-A2509-C1
	Wire size 2.7 to 6.6 mm ² (AWG 12 to 10)	2.5 to 4 mm ² double-sided locating spring	2000 Stck.	26473.331.042	W53073-A2510-C1
	Voltage contacts 7 to 31				
	Ring-cable lugs	Crimp spring contacts ¹⁾ from	Weidmüller		
	$d_1 = 4 \text{ mm} (0.2 \text{ in})$	0.5 to 1mm ²	3000 Stck.	162 552	W73073-A2502-C1
		1.5 to 2.5 mm ²	2500 Stck.	162 550	W73073-A2503-C1
	W _{max.} = 9 mm (0.36 in)				
	Wire size 1 to 2.6 mm ² (AWG 16 to 14)				

1) only for panel flush mounting

Conditions of Sale and Delivery Export Regulations, Trademarks, Dimensions

Conditions of Sale and Delivery

Subject to the

General Conditions of Supply and Delivery for Products and Services of the Electrical and Electronic Industry and to any other conditions agreed upon with the recipients of catalogs. The technical data, dimensions and weights are subject to change unless otherwise stated on the individual pages of this catalog. The illustrations are for reference only. We reserve the right to adjust the prices and shall charge the

the prices and shall charge the prices applying on the date of delivery. En 1.91a

Export Regulations

In accordance with the present provisions of the German Export List and the US Commercial Control List, export licences are not required for the products listed in this catalog. An export licence may however be required due to countryspecific application of the products. Relevant are the criteria stated in the delivery note and the invoice. Subject to change without notice.

Trademarks

All product designations used are trademarks or product names of Siemens AG or of other suppliers.

Dimensions

All dimensions in this catalog are given in mm, unless otherwise indicated.

Siemens online!

The Power Transmission and Distribution Group can also be found in the Internet:

http://www.ev.siemens.de

Responsible for <u>Technical contents:</u> Hans Heining-Triebs Siemens AG, EV S V13, Nürnberg <u>General editing:</u> Claudia Kühn-Sutiono Siemens AG, EV BK2, Erlangen

Bereich Energieübertragung und -verteilung Geschäftsgebiet Sekundärsysteme Postfach 4806 D-90026 Nürnberg

Power Transmission and Distribution

Siemens Aktiengesellschaft

Order No.: E50001-K5712-A261-A1-7600